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Solitary acoustic pulses can propagate along the surface of a coated homogeneous and inhomogeneous
medium. It is shown how these nonlinear surface acoustic waves evolve out of initial pulselike conditions
generated by pulsed laser excitation and how they can be monitored by optical detection. The solitary pulse
shapes at the surface are computed on the basis of an evolution equation with nonlocal nonlinearity. They
depend on the anisotropy of the substrate. Various approaches for the derivation of the evolution equation from
nonlinear elasticity theory are critically compared. The behavior of the solitary pulses in collisions is investi-
gated and is found to strongly depend on the linear dispersion law. The nontrivial depth dependence of these
solitary pulses is also analyzed.
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I. INTRODUCTION

Solitary waves are pulselike entities of nonlinear excita-
tions that propagate through a system without change of their
shape[1]. The phenomenon of solitary waves is a ubiquitous
one that has been observed and thoroughly studied in many
branches of science, such as fluid dynamics, optics, plasma
physics, etc.[2]. In the field of acoustic wave propagation in
solids, comparatively few experimental studies have been re-
ported with the aim of observing solitary waves. This is
partly due to the difficulties encountered in exciting acoustic
waves with sufficiently high intensity in a controlled way.
Another important obstacle is the fact that the elastic nonlin-
earity in a solid is very small. As a rule, the higher-order
elastic moduli of a solid are usually of the same order of
magnitude as the second-order ones. Consequently, the ratio
of nonlinear to linear terms in the governing equations for
the displacements in the solids is given by a typical strain or
acoustic Mach number, which can normally not exceed val-
ues of the order of 0.01, without causing fracture of the ma-
terial.

The localization of solitary waves is achieved by an inter-
play of nonlinearity and dispersion. Since the equations of
elasticity theory for a homogeneous elastic medium do not
contain a length scale, dispersion of linear acoustic waves
can occur only through length scales defined by the propa-
gation geometry or due to coupling of the strains to other
degrees of freedom. Here, we are not considering envelope-
type solitons but the type of solitary waves that are formed

when weak nonlinearity is matched by weak dispersion,
similar to the classical solitons propagating in shallow water.

In the past, observations of strain solitary waves have
been made in elastic rods using laser excitation[3]. In this
case the dispersion of the relevant linear modes is due to the
finite diameter of the rod. Very recently bulk acoustic solitary
waves have been generated and observed[4]. Here, it was
the discreteness of the underlying crystalline structure of the
medium that gave rise to the dispersion of acoustic bulk
waves of sufficiently high frequencies. A third type of soli-
tary acoustic waves that has been realized experimentally by
pulsed laser excitation are surface acoustic solitary pulses.
Here, the dispersion is generated by covering the homoge-
neous elastic medium with a thin film made out of a suitable
material to realize normal or anomalous dispersion[5,6].

Surface acoustic solitary pulses can be distinguished from
the other two types of acoustic solitary waves in solids, re-
alized up to now experimentally, by their two-dimensional
character. The spatial extension of a solitary pulse in a rod
along its axis is much larger than the diameter of the rod. As
long as diffraction effects can be neglected, the strain fields
associated with bulk acoustic solitons may be regarded as
varying only along the direction of propagation. In compari-
son to these one-dimensional solitary waves, Rayleigh wave
pulses or, more generally, surface acoustic wave(SAW)
pulses have a nontrivial depth structure that extends into the
elastic medium on the same length scale as the width of the
pulse along the surface. In that respect, they are comparable
to the lump soliton solution of the Kadomtsev-Petviashvili
equation[7]. One goal of this paper is to analyze the depth
dependence of surface acoustic solitary waves. Nevertheless,
their associated strain distribution at the surface can be de-
rived from a one-dimensional scalar evolution equation,
from which the depth dependence of the displacement field is
eliminated. However, this elimination leads to a nonlocal
nonlinearity[8–11]. In the following section a derivation of
this evolution equation is given, and it is shown explicitly
that the approaches by Lardner[12], Parker[13–15] and the
Hamiltonian approach used by Zabolotskaya, Hamilton, and
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co-workers[16–18] lead to the same result. We then present
stationary pulse-type solutions of this evolution equation for
different dispersion laws. Section IV contains a description
of the experimental techniques used to launch surface acous-
tic pulses with finite amplitudes and to analyze their shapes
at the surface. Experimental results are presented for the for-
mation of a solitary pulse and compared with results of nu-
merical simulations. In Sec. V, a numerical study of colli-
sions of SAWs pulses is presented. It is found that such
collisions are usually not elastic and that the collision sce-
nario strongly depends on the dispersion law of linear SAWs.
In particular, pulse collisions are found to be almost elastic if
the linear dispersion term in the evolution equation is that of
the Korteweg–de Vries(KdV) equation. A strong dependence
on the type of linear dispersion is also demonstrated for the
pulse evolution with initial conditions that are close to the
shape of a solitary pulse(Sec. VI). Section VII is devoted to
the construction of the depth profile of a solitary pulse and
stationary periodic nonlinear surface waves, from the strain
distribution at the surface. Numerical results for the depth
profiles in different propagation geometries are given. The
paper ends with a short conclusion.

II. EVOLUTION EQUATION

A semi-infinite elastic medium is considered that fills the
half-spacez,0 in its undeformed state. It may be covered
by a film filling the spatial region 0,z,d. The elastic prop-
erties of this system are characterized by second-order elastic
moduli Cab mn and third-order elastic moduliCab mn zj.
Moduli of higher order will not be taken into account in the
following derivations. For the Cartesian indices we use small
Greek characters. In order to keep the notation simple, we
shall not introduce different sets of indices for the material
and spatial coordinate systems. For the following, it is con-
venient to define the coefficientsSab mn zj=Cab mn zj

+damCzj bn+dazCbj mn+dmzCab nj [19]. The mass densityr
and the elastic moduli of the system have to be regarded as
beingz dependent.

The Lagrangian of the system is given by

L =E d3xsEk − Epd, s2.1d

with the densities of the kinetic energy

Ek =
1

2
ru̇au̇a s2.2d

and potential energy

Ep =
1

2
Cab mnua,bum,n +

1

6
Sab mn zjua,bum,nuz,j s2.3d

up to terms of third order in the displacement gradients
ua,b=]ua /]xb. In Eqs. (2.2) and (2.3) and likewise in the
remainder of this paper, a summation convention is invoked
that implies summation over repeated Cartesian indices. One
(two) dot(s) on top of a symbol stands(stand) for the first
(second) derivative with respect to time. In Eq.(2.1), the
volume integral refers to the material coordinatesxa, a

=1,2,3, and weregard the displacement field as function of
these material coordinates. In order to reduce the number of
indices in the following equations, we shall use the symbols
x,y,z for x1,x2,x3.

Applying Hamilton’s principle, the equation of motion

rüa =
]

] xb

Tab s2.4d

for the displacement field follows, as well as the boundary
conditions requiring that the Piola-Kirchhoff stress tensor
componentsTa3 have to be continuous at the interface and
zero at the free surface of the system.sTab=]Ep/]ua,b·d In
addition, we have to require the continuity of the displace-
ment field at the interface, and for the description of waves
excited at or near the surface, we have to impose the follow-
ing conditions atz→−`: The displacement field has either to
vanish or the acoustic Poynting vector has to be directed into
the medium; i.e., itsz component has to be negative. In the
following, we consider the propagation of plane waves along
the x direction, and therefore let the displacement field be
independent of the coordinatey.

Among the various ways of introducing dispersion for
linear surface acoustic waves, we here consider theoretically
two possibilities:(i) a film on the surface having acoustic
properties different from those of the substrate and(ii ) spa-
tial variations of the mass density and/or elastic moduli of
the substrate along the direction normal to the surface
(graded material).

In case(i), the thicknessd of the film is chosen to be
much smaller than typical wavelengthsl=2p /q of the
SAWs since the dispersion has to be sufficiently small. In
this regime, one may eliminate the displacement field in the
film in an expansion in powers ofqd to obtain an effective
boundary condition[20,21], which has the form

Ta3sx,0−,td = − dhrFüasx,0−,td − gab
s1dub,11sx,0−,td

− gabg
s2d ub,11sx,0−,tdug,1sx,0−,tdj

+ d2hgab
s3drFüb,1sx,0−,td + gab

s4dub,111sx,0−,tdj

+ Osu2d2,u3d,ud3d. s2.5d

Here,rF is the mass density of the film material. The coef-
ficientsgab

s1d, gab
s3d, andgab

s4d depend on the second-order elastic
moduli of the film material, whilegabg

s2d depends on its
second-order and third-order elastic moduli. Explicit expres-
sions are given in Ref.[22]. The notation 0− indicates that
the corresponding quantity has to be taken on the substrate
side at the interface between substrate and film.

In case(ii ), we decompose the mass density and elastic
moduli into an average value and a part varying withz:

rszd = r̄ + Drszd, s2.6ad

Cab mnszd = C̄ab mn + DCab mnszd. s2.6bd

In equations that contain the average quantitiesC̄ab mn andr̄
only, we shall drop the overbars in order to simplify the
notation. In equations whereCab mn and r stand for
z-dependent quantities, theirz dependence is indicated ex-
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plicitly to distinguish them from their average values.
We note here that in the regime of small dispersion,(ii )

does not contain(i) as a special case, since we have not
imposed any restriction on the acoustic mismatch between
the film and substrate materials. If this mismatch is large, the
necessary smallness of the dispersion in(i) is achieved by
letting the film thickness be small.

In the following, we shall briefly introduce three methods
of deriving an evolution equation for weakly nonlinear and
weakly dispersive Rayleigh waves. This equation contains a
scalar field that depends on the variablesj=x−vRt and a
stretched time coordinatet. (vR is the phase velocity of lin-
ear nondispersive SAWs.) Also, we shall show that the evo-
lution equations derived by these three different approaches
are identical.

A. Projection method

This approach has been pioneered by Reutov[23] and
Parker [13–15] for homogeneous substrates and has also
been applied to the derivation of nonlinear modulation equa-
tions for wave envelopes[24,25]. The displacement field is
represented as an asymptotic expansion in powers of a small
parameter 0,«!1 which is of the size of a typical strain:

u = eus1d + e2us2d + Ose3d. s2.7d

In addition, the thickness of the film in case(i) or the devia-
tions of the density and elastic moduli from their average
values in case(ii ) are scaled to be of first order ine, and a
stretched time coordinatet=et is introduced. The fieldus1d

must then be a solution of the linearized version of the equa-
tions of motion(2.4) and the corresponding boundary condi-
tions. It may be chosen to be a superposition of linear SAWs
of the free substrate surface:

us1dsx,z,td =E
0

` dq

2p
eiqj wszuqdAsq,td + c.c., s2.8d

where c.c. denotes the complex conjugate.w, normalized in
an appropriate way, is the displacement field of a straight-
crested linear Rayleigh wave with wave vectorsq,0d. In non-
piezoelectric homogeneous media with a planar surface, it
may be represented as the sum of at most three exponentials:

wszuqd = o
r=1

3

bsrdeqasrdz. s2.9d

In writing Eq. (2.9), we have adopted a normalization that
leaves the generalized polarization vectorsb independent of
the modulus ofq. The decay constantsa are independent of
uqu, too.

The fieldus2d is the solution of an inhomogeneous linear
boundary value problem. It has to satisfy the equation of
motion

Hdabr
]2

] t2
−

]

] xm

Cam bn

]

] xn
Jub

s2d

=
1

2

]

] xb

Sab mn gd um,n
s1d ug,d

s1d + 2rvR
]2

] x ] t
ua

s1d + La

s2.10d

and boundary condition atz=0:

− Ca3 bnub,n
s2d =

1

2
Sa3 mn gd um,n

s1d ug,d
s1d + Ma. s2.11d

In the case of a thin film coating the substrate[case(i)], the
term La in the equation of motion vanishes, while

Ma = dFHdabrF
]2

] t2
− gab

s1d ]2

] x2Jub
s1dG

z=0
. s2.12d

In the case ofz-dependent density and/or elastic moduli[case
(ii )], these terms have the form

La = − DrvR
2ua,11

s1d +
]

] xm

DCam bn

]

] xn

ub
s1d, s2.13d

Ma = FDCa3 bn

]

] xn

ub
s1dG

z=0
. s2.14d

In addition,us2d has to decay to zero forz→−` or at least
satisfy Sommerfeld-type radiation conditions.

The right-hand sides of Eqs.(2.10) and (2.11) depend on
the “fast” variablesx and t only throughj=x−vRt. Since
secular terms inx and t have to be avoided,us2d can depend
on x and t only through j, too. To ensure that the linear
inhomogeneous boundary value problem can be solved with-
out secular terms inx andt, a compatibility condition has to
be satisfied. This condition is obtained by projecting Eq.
(2.10) on a straight-crested surface wave solution

ūsj,zd = eiqj wszuqd; s2.15d

i.e., Eq.(2.10) is multiplied by ūa
* , summed overa=1,2,3

and integrated overx from −` to +` and overz from −` to
0. By performing twice an integration by parts and using Eq.
(2.11) in the boundary terms, the second-order fieldus2d is
eliminated. Transforming from displacement amplitudes
Asq,td to strain amplitudesBsq,td= iqAsq,td, the following
result is obtained, which is the desired evolution equation:

i
]

] t
Bsqd = q2DsqdBsqd + vRqHE

0

q

Fsk/qdBskdBsq − kd
dk

2p

+ 2E
q

`

sq/kdF*sq/kdBskdB*sk − qd
dk

2pJ s2.16d

for q.0. In Eq. (2.16) and in most of the following equa-
tions involving B, the dependence ont is not indicated ex-
plicitly in order to simplify the notation. The quantity
q2Dsqd=vsqd−vRq is the difference between the frequency
vsqd of linear surface waves in the system and Rayleigh
waves of a homogeneous substrate with densityr and
second-order elastic moduliCab mn [i.e., the homogeneous
substrate without film in case(i) and with Dr=0, DCab mn
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=0 in case(ii )]. The derivation procedure provides explicit
expressions forDsqd in terms of the acoustic properties of
the film in case(i), the inhomogeneous parts of the mass
density and elastic moduli in case(ii ), and the depth profile
w of linear Rayleigh waves for a homogeneous substrate
with no film. These expressions are partly given in Refs.
[26,27]. In case(i), Dsqd=vRm0d, whered is the film thick-
ness and the constantm0 depends on the ratio of the mass
densities of the film and substrate material and on the ratios
of the elastic moduli of film and substrate. The coefficientm0
can have either sign and may vanish for special choices of
the linear acoustic mismatch between film and substrate.
This means that the linear dispersion can be normal or
anomalous. For isotropic substrates and films, the following
simple formula is easily derived:

m0 = 0.5vRP0FcF

cS
−

rF

rS
G , s2.17d

where we have definedc=l+2m−l2/ sl+2md in terms of
the Lamé constantsl andm. The indicesS andF stand for
substrate and film, respectively. The coefficient

P0 = − 2Î1 − svR/vTd2 cS

mSD0
SvR

vT
D2

s2.18d

depends on material constants of the substrate, only. Here,

D0 = 16F1

4
SvR

vT
D4

+
vT

4

vR
2vL

2 + S vT

vR
D2

− 2SvT

vL
D2G s2.19d

andvL andvT are the velocities of the longitudinal and trans-
verse bulk waves in the substrate.m0 vanishes if rF /rS
=cF /cS. In this case, we may approximateDsqd=vRm1qd2.
The following expression is obtained for the coefficientm1:

m1 =
1

2

rF

rS
FP1 + P2

rF

rS
+ P3

mF

lF + 2mF
G . s2.20d

Like P0, the coefficients

P1 = SvR

vT
D2F2 −SvR

vT
D2G cS

mSD0
, s2.21ad

P2 =
1

2D0
SvR

vT
D4F4 −SvR

vT
D2GFSvR

vT
D2

−
cS

mS
G ,

s2.21bd

P3 = − 2SvR

vT
D4F2 −SvR

vT
D2G 1

D0
s2.21cd

depend on the material properties of the substrate only. De-
pending on the Lamé constants of the film,m1 can be posi-
tive or negative. It has been reported in Ref.[22] how the
asymptotic expansion(2.7) has to be modified in this case to
make sure that nonlinearity and linear dispersion appear at
the same order in the evolution equation.

The dimensionless functionF depends on the ratios of the
second-order and third-order elastic moduli of the substrate
only. In the above derivations, it results as the overlap inte-
gral:

Fsq8/qd =
− i

N0
Sab mn zj E

−`

0

fDbsqdwaszuqdg*

3fDnsq8dwmszuq8dgfDjsq − q8d

3wzszuq − q8dg
1

q8sq − q8d
dz, s2.22d

where

N0 = 4rvR
2qE

−`

0

wa
* szuqdwaszuqddz= 4rvR

2o
r,r8

ba
* srdbasr8d

a*srd + asr8d

s2.23d

and where we have defined the operatorDasqd= iqda1

+da3] /]z. F has the following explicit analytic form:

FsXd = o
r,r8,r9=1

3
Msr,r8,r9d

a*srd + Xasr8d + s1 − Xdasr9d
s2.24d

for argumentsXP f0,1g. It obviously has the property
FsXd=Fs1−Xd. The coefficientsMsr ,r8 ,r9d are determined
by the formula

Msr,r8,r9d =
− i

N0
Sab mn zj fKbsrdbasrdg*fKnsr8dbmsr8dg

3fKjsr9dbzsr9dg. s2.25d

The vectorsbsrd, r =1,2,3,were introduced in Eq.(2.9), and
the vectorsK srd are defined byKasrd=da1i +da3asrd. Nu-
merical values for these coefficients are listed in Table I per-
taining to the(111) surface of silicon with propagation along

the f112̄g direction.
When calculating these coefficients, the normalization of

the functionsw has been chosen such thatw3s0uqd=1. This
implies that the Fourier transform of the functionBsqd is the
local slope of the surface:

E
0

` dq

2p
Bsqdeiqsx−vRtd + c.c. =u3,1

s1dsx,0,td. s2.26d

TABLE I. CoefficientsMsr ,r8 ,r9d (real and imaginary parts),
r ,r8 ,r9=1,2, for thesubstrate Sis111d and propagation direction

f112̄g. Second-order and third-order elastic moduli taken from Ref.
[30]. Normalization: w3=1. The corresponding decay constants
asrd, r =1,2, areas1d=1.202−i0.303, as2d=0.213+i0.079. Ray-
leigh wave velocityvR=4736 m/s.

sr ,r8 ,r9d ResMd ImsMd

(1, 1, 1) 0.335 0.312

(1, 1, 2) −0.295 −0.070

(1, 2, 1) −0.295 −0.070

(1, 2, 2) 0.309 0.120

(2, 1, 1) −0.441 0.041

(2, 1, 2) 0.369 −0.155

(2, 2, 1) 0.369 −0.155

(2, 2, 2) −0.390 0.025
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In Fig. 1, the functionFsXd is shown for three propaga-
tion geometries; the first one corresponds to isotropic silica
as substrate material, and the other two refer to two different
propagation directions and surfaces of silicon. The normal-
ization of w is now such thatw1s0uqd=1, and consequently,
the Fourier transform ofBsqd is u1,1

s1dsx,0 ,td=−vRu̇1
s1dsx,0 ,td;

i.e., it is proportional to the in-plane component of the par-
ticle velocity at the surface, a quantity frequently considered
in fluid dynamics.

Figure 1 shows that in the isotropic case and for Sis001d
with the propagation direction along a cubic axis, the func-
tion F is real with the latter normalization(imaginary for the
prior normalization). In contrast to these high-symmetry
cases, the functionF is complex in the case Sis111dk112l
with the imaginary part being larger than the real part in the
latter normalization.

Note thatFsXd is proportional to the functionJ−1KsXd,
0,X,1, which was introduced by Parker[15] and by

Parker and David[31]. In the latter work piezoelectricity has
also been taken into account. The authors give graphical rep-
resentations of these functions for two different propagation
geometries in the substrate material LiNbO3.

Porubov and Samsonov[32] have described a derivation
of an evolution equation for nonlinear SAWs of sagittal po-
larization propagating in an isotropic substrate coated by an
isotropic film. A direct comparison of Eq.(2.16) with their
evolution equation[Eq. (4.25) in Ref. [32]] is complicated
by the fact that the latter one is not given in explicit form.
Their derivation is essentially very similar to the one given
in this subsection, also making use of a compatibility condi-
tion in its final step. Therefore their evolution equation
should agree with Eq.(2.16).

B. Introduction of a stretched depth coordinate

In the derivation of the evolution equation(2.16) outlined
above, the higher-order fieldsusnd, n=2,3, . . .,contain secu-
lar terms in the depth coordinatez. It has been criticized by
Lardner[12] that these terms cause the expansion(2.7) to be
nonuniform. To avoid such secular terms, he introduced a
stretched depth coordinateh=ez. The amplitudes of each of
the (maximally three) generalized plane waves that make up
a straight-crested linear surface wave are allowed to depend
on h in a different way. Hence, the first-order term in
Lardner’s asymptotic expansion of the displacement field,
ũ=eũs1d+e2ũs2d+Ose3d, is

ũs1dsx,z,td =E
0

` dq

2p
eiqjo

r=1

3

bsrdeqasrdzcrsq,h,td + c.c.

s2.27d

For h=0, ũs1d has to satisfy the linearized traction-free
boundary conditions at the surface of the substrate. Conse-
quently,crsq,0 ,td=Asq,td is independent ofr.

In order to exclude secular terms inz from the second-
order fieldũs2d, the following constraints have to be met:

]

] h
crsq,h,td = − 2igsrd

]

] t
crsq,h,td + iGsrd

3E
0

q dk

2p
ksq − kdcrsk,h,tdcrsq − k,h,td,

s2.28d

with the coefficients

gsrd =
vRr

nsrd
basrdbasrd, s2.29d

Gsrd = i
1

2nsrd
Sab mn zj basrdbmsrdbzsrdKbsrdKnsrdKjsrd,

s2.30d

nsrd = basrdhCa3 bn + Can b3jKnsrdbbsrd. s2.31d

These constraints determine theh dependence ofcrsq,h ,td,
oncecrsq,0 ,td=Asq,td is known.

FIG. 1. The dimensionless functionF for substrate fused quartz

(a), Sis001dk001l (b), Sis111df112̄g (c). Normalization:w1=1. The
second-order and third-order elastic moduli were taken from Ref.
[28] [solid line in (a)], Ref. [29] [dashed line in(a)], Ref. [30]
[(b),(c)].
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At second order ofe, the equation of motion in the sub-
strate and the boundary condition atz=h=0 have the form of
Eqs. (2.10) and (2.11) with the following modifications:
us1d ,us2d have to be replaced byũs1d ,ũs2d, to the right-hand
side of Eq. (2.10) one has to addhCa3 bn+Can b3j
3s] /]hdũb,n

s1d , and the right-hand side of the boundary condi-
tion Eq. (2.11) has to be supplemented by the term
Ca3 b3s] /]hdũb

s1d. All terms in Eq.(2.11) have to be taken at
z=h=0.

Due to the additional terms, the linear inhomogeneous
boundary value problem forũs2d at h=0 differs from the
corresponding one forus2d. However, the compatibility con-
ditions of both boundary value problems, which constitute
the evolution equation forAsq,td, turn out to be identical.
This can be easily shown by projecting the equation of mo-
tion for ũs2d on ū as defined in Eq.(2.15) and integrating by
parts in the same fashion as done when deriving the evolu-
tion equation(2.16) in the previous subsection. As a result,
Eq. (2.16) is obtained with the following additional terms on
the right-hand side:

− 2iq

N0
HE

−`

0

wa
* szuqdhCa3 bn + Can b3jq

3o
r=1

3

Knsrdbbsrdeqasrdz F ]

] h
crsq,h,tdG

h=0
dz

− wa
* s0uqdCa3 b3o

r=1

3

bbsrdF ]

] h
crsq,h,tdG

h=0
J .

s2.32d

The expression(2.32) vanishes, as can be shown by consid-
ering the identities

0 =E
−`

0

zfaszdhsvRqd2dab + DmsqdCam bnDnsqdjwb
* szuqddz

=E
−`

0

wa
* szuqdhsvRqd2dab + DmsqdCam bnDnsqdjzfbszddz

− wa
* s0uqdCa3 b3fbs0d=E

−`

0

wa
* szuqdhCa3 bn

+ Can b3jDnsqdfbszd − wa
* s0uqdCa3 b3fbs0d, s2.33d

where we have used the abbreviation

fszd = o
r=1

3

bsrdeqasrdzF ]

] h
crsq,h,tdG

h=0
. s2.34d

C. Hamiltonian approach

This alternative method of deriving the evolution equation
for weakly nonlinear SAWs has been used extensively by
Zabolotskaya and co-workers to describe nonlinear Rayleigh,
Stoneley, and Scholte waves[16–18,33]. It is summarized
here in a simplified form without introducing explicitly con-
jugate momenta and the canonical equations. An exact solu-

tion of the linearized equation of motion and boundary con-
dition in the form of a superposition of straight-crested
SAWs,

usx,z,td =E
−`

` dq

2p
w̃szuqdeiqxasq,td, s2.35d

is inserted into the Lagrangian(2.1), which leads to an ef-
fective Lagrangian for the amplitudesasqd:

L =E
−`

d

dzHE
−`

` dq

2p

1

2
rszdw̃aszu− qdw̃aszuqdȧs− qdȧsqd

−E
−`

` dq

2p

1

2
Cam bnszdfDms− qdw̃aszu− qdg

3fDnsqdw̃bszuqdgas− qdasqd

−E
−`

` dq

2p
E

−`

` dk

2p
E

−`

` dp

2p

1

6
Sab mn zjszdfDbsqdw̃aszuqdg

3fDnskdw̃mszukdgfDjspdw̃zszupdg

32pdsq + k + pdasqdaskdaspdJ . s2.36d

We emphasize thatw̃szuqd is the depth profile of a linear
SAW propagating in the substrate covered with a thin film
and/or havingz-dependent material properties. Furthermore
w̃szu−qd=w̃*szuqd andas−q,td=a*sq,td. The second term on
the right-hand side of Eq.(2.36) is now integrated by parts
taking advantage of the fact that

Ca3 mnsddfDnsqdw̃mszuqdgz=d = 0. s2.37d

Performing now the variation of the action integral with re-
spect to the real and imaginary parts of the complex ampli-
tudes asqd, q.0 or, equivalently, with respect toas−qd,
q.0, one obtains equations of motion for the amplitudes
asqd:

0 =E
−`

d

dzHrszdw̃aszu− qdw̃aszuqdäsqd − w̃aszu− qd

3DmsqdCam bnszdDnsqdw̃bszuqdasqd

+
1

2
Sab mn zjszdE

−`

` dk

2p
fDbs− qdw̃aszu− qdgfDnskdw̃mszukdg

3fDjsq − kdw̃zszuq − kdgaskdasq − kdJ . s2.38d

Decomposing now the complex amplitudeasq,td into a part
that varies slowly and one that varies rapidly in time,

asq,td = Asq,tdexps− ivRqtd, s2.39d

and neglecting the second time derivative ofA, Eq. (2.38)
becomes
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]

] t
Asqd =

1

2qvR
fv2sqd − svRqd2gAsqd

+E
−`

` dk

2p
Gsq,kdAskdAsq − kd, s2.40d

wherevsqd is the frequency of the linear surface wave with
wave numberq, propagating in the layered and/or inhomo-
geneous substrate, while

Gsq,kd =
1

NsqdE−`

d

dz Sab mn zjszdfDbs− qdw̃aszu− qdg

3fDnskdw̃mszukdgfDjsq − kdw̃zszuq − kdg s2.41d

and

Nsqd = 4vRuquE
−`

d

dz rszdw̃a
* szuqdw̃aszuqd. s2.42d

Since the dispersion is small,uv2sqd−svRqd2u! svRqd2, we
may replacev2sqd−svRqd2 by 2vRq3Dsqd in Eq. (2.40). In
addition, the integrals overz in Eqs.(2.41) and(2.42) may be
extended from −̀ to 0 andw̃ may be replaced byw. Also

Sszd andrszd may be replaced by their average valuesS̄ and
r̄ in the latter two equations. In this way, the evolution equa-
tion (2.16) is recovered with the same expression(2.22) for
the function F. The equivalence of this Hamiltonian ap-
proach and the one introduced in the first subsection has
already been stated by Reutov[23] for the nondispersive
case.

The factorization(2.39) may already be done in the La-

grangian(2.36). Neglecting thereȦsqdȦs−qd in comparison

to uvRqAsqdȦs−qdu and introducing the approximations stated
below Eq. (2.42), a Lagrangian for the evolution equation
(2.16) is obtained:

L =E
−`

` dq

2p
sgnsqdH 1

q2iFBs− qd
]

] t
Bsqd − Bsqd

]

] t
Bs− qdG

− 2DsuqudBs− qdBsqdJ−E
−`

` dq

2p
E

−`

` dk

2p
E

−`

` dp

2p

3Ksq,k,pd2pdsq + k + pdBsqdBskdBspd, s2.43d

with the function

Ksq,k,pd =
4ivR

3N0qkp
Sab mn zjE

−`

0

fDbsqdwaszuqdg

3fDnskdwmszukdgfDjspdwzszupdgdz, s2.44d

which is symmetric with respect to permutations of its argu-
ments. For 0,k,q, the relation Ks−q,k,q−kd
=4vRFsk/qd / s3qd holds. It is easy to verify that variation of
the action integral with the Lagrangian(2.43) leads to Eq.
(2.16) [34]. Applying Noether’s theorem to translational in-
variance of the Lagrangian in space and time, the following
two conserved quantities are obtained:

E
0

` dq

2p

1

q
uBsqdu2, s2.45d

E
0

` dq

2p

i

q2HB*sqd
]

] t
Bsqd − Bsqd

]

] t
B*sqdJ . s2.46d

D. Other evolution equations

When transforming Eq.(2.16) from Fourier space into
real space, the nonlinearity in the evolution equation will
reveal its strongly nonlocal character. This is in particular
due to the factorq/k in the second nonlinear term of Eq.
(2.16). In this respect, Eq.(2.16) differs from the KdV equa-
tion and the Benjamin-Ono equation which have both been
suggested as governing equations for nonlinear SAWs
[35–38].

Gusevet al. [39,40] have developed an evolution equation
for nonlinear Rayleigh waves in homogeneous half-spaces
which contains a nonlocal second-order nonlinearity ex-
pressed in terms of Hilbert transforms. This equation has
been used to interpret recent SAW experiments. In a regime
far from shock formation, very satisfactory agreement has
been found between experimental wave form evolution and
theoretial predictions based on this evolution equation
[41–43]. However, this equation differs from Eq.(2.16). (For
a discussion of the differences see also Ref.[33].) The ap-
proach of Gusevet al. has also been extended to include
dispersion of acoustic waves, and solitary wave solutions
have been discussed for special cases[62].

In the derivations of the evolution equation(2.16) out-
lined above, we had in view the temporal evolution of an
initial wave profile. The strain field at the surface is therefore
a function of the coordinatej=x−vRt and the stretched time
t. Equally, one may consider the spatial evolution(in the x
direction along the surface) of a temporal strain pulse, for
example. This viewpoint pertains to the experiments de-
scribed in Sec. IV. In this case, one obtains the same evolu-
tion equation (2.16), where t is now interpreted as a
stretched spatial coordinate. More precisely,t=ex/Vx, where
Vx is thex component of the group velocity associated with
nondispersive linear Rayleigh waves propagating in thex
direction of the substrate’s surface. This is easily shown by
using the projection method.

III. TRAVELING WAVE SOLUTIONS

When assuming for the linear dispersion the power law
q2Dsqd=m̄,−2q

,, ,ù2, and inserting into Eq.(2.16) the an-
satz

Bsq,td = ks1Qsks2qde7iqkvRt s3.1d

for the dependence ofB on t and q with k.0, s1
=s,−2d / s,−1d, and s2=−1/s,−1d, the following integral
equation is obtained:
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f±1 + q,−1Z,gQsqd =E
0

q

Fsk/qdQskdQsq − kd
dk

2p

+ 2E
q

`

sq/kdF*sq/kdQskdQ*sk − qd
dk

2p
,

s3.2d

whereZ,=−m̄,−2/vR. From Eq.(3.2) we may deduce that if a
solitary solution exists for these dispersion laws, it will obey
the scaling

ua,1
s1d sx,0,td = kSa„k

1/s,−1dsj 7 kvRt − j0d…. s3.3d

For more general dispersion laws that are not power laws,
one may still find solitary solutions with an ansatz of the
form (3.1), but the scaling property(3.3) is no longer
present. The functionSa represents the shape of the solitary
solution. For an isotropic substrate,S1 is even andS3 is odd,
which is related to the fact thatF is purely real (purely
imaginary) for Q being the Fourier transform ofS1 sS3d. In
general,S1 andS3 are related to each other via

S3sjd = c1ĤfS1gsjd + c2S1sjd + Osed. s3.4d

with the coefficientsc1 and c2 that are determined by the
linear acoustic properties of the(homogeneous) substrate.

(ĤfSg is the Hilbert transform ofS.) These functions can be
determined numerically as a limiting case of stationary peri-
odic solutions with periodicityL=2p /q0. With Bsq,td
=2pdsq−nq0dkQnexps7inq0kvRtd in Eq. (2.16) and by lim-
iting the number of harmonics toN, the integral equation
(3.2) is converted into a set ofN nonlinear coupled algebraic
equations:

s±1 + z,n
,−1dQn = o

m=1

n−1

Fsm/ndQmQn−m

+ 2 o
m=n+1

N

sn/mdF*sn/mdQmQm−n
* ,

s3.5d

wherez,=Z,q0
,−1/k. For given values ofz, andN, Eq. (3.5)

is solved numerically with the help of a Newton-Raphson
minimization routine. With decreasinguz,u the periodic wave
form resulting from the solution of Eq.(3.5) becomes a pe-
riodic pulse train with well-separated pulses.

In Fig. 2, pulse shapes are compared for two propagation
geometries pertaining to the same substrate material—
namely, silicon. In the first case Sis001dk100l, S1 is an even
and S3 is an odd function as in isotropic substrates. In the

second case Sis111df1̄1̄2g, the pulse shapes are no longer
purely even or purely odd. In addition, the shapes ofS1 and
S3 seem to be nearly reversed as compared to the first case:
S1 is almost antisymmetric whileS3 is almost symmetric.
This is a strong manifestation of the substrate’s anisotropy.

A characteristic feature ofS1 in isotropic substrates and

for Sis001dk100l as well asS3 for Sis111dk112̄l is the “Mexi-
can hat” shape. The appearance of the two negative minima
next to the maximum is forced upon the pulse by the condi-
tion that the integral over the pulse has to vanish:

E
−`

`

Sasjddj = 0. s3.6d

This is a direct consequence of the factorq/k in the second
nonlinear term on the left-hand side of the integral equation
(3.2). Since the functionF is bounded, this causes the behav-
ior Qsqd→0 asq→0.

Once a stationary solutionSa is found for a given disper-
sion parameterm̄,−2,0 (normal dispersion), the correspond-
ing solution for the same value ofm̄,−2, but with reversed
sign (anomalous dispersion), is also found:

ua,1
s1d sx,0,td = − kSa„k

1/s,−1dsj ± kvRt − j0d…. s3.7d

The sign change of the solitary wave and of its velocity
relative tovR has been confirmed in recent experiments[6].
In all cases that we have investigated, the solitary pulses
propagate faster than nondispersive Rayleigh waves in the
case of normal dispersion and slower for anomalous disper-
sion.

Another interesting aspect is the transformation property
of the solitary pulse under inversion of the propagation di-

rection. Definingj̄=x+vRt and choosing

us1dsx,z,td =E
0

` dq

2p
eiqj̄ wszuqdB̄sq,td/siqd + c.c., s3.8d

instead of Eq.(2.8) in the asymptotic expansion(2.7), we

obtain for the strain amplitudesB̄sq,td an evolution equation
that differs from Eq.(2.16) only by the sign of its left-hand
side. [Note that the right-hand side of Eq.(3.8) solves the

FIG. 2. Solitary pulse shapes for the substrate Sis001dk001l (a),

Sis111df1̄1̄2g (b). Solid line: −S1. Dashed line:S3 (rescaled).
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linearized equation of motion and boundary conditions for a
homogeneous substrate in the absence of a film.] Conse-
quently, the ansatz

B̄sq,td = ks1Qsks2qde±iqkvRt s3.9d

instead of Eq.(3.1) leads again to Eq.(3.2) for the Fourier
transform of the pulse shape,Qsqd. This leads us to the fol-
lowing conclusion: If Eq.(3.3) is a pulse solution propagat-
ing in the positivex direction, then

ua,1
s1d sx,0,td = kSa„k

1/s,−1dsj̄ + kvRt − j̄0d… s3.10d

is the corresponding pulse solution propagating in the nega-
tive x direction. This also follows directly from the time
reversal symmetry of the equations of elasticity theory. Ro-
tating now the coordinate system around thez axis such that
the direction of thex axis is reversed, we obtain the follow-
ing transformation formulas for the pulse shape functions:
S1sxd→S1s−xd, S3sxd→−S3s−xd. In isotropic substrates,S1 is
an even function andS3 is an odd function. Consequently the
pulse shapes are unchanged when reversing the propagation
direction. More generally this holds true whenever the func-
tion F is purely real for the normalizationw1=1 and purely
imaginary for the normalizationw3=1. If this is not the case,
as in the substrate geometry Sis111dk112l, the pulse shapes
may strongly change when reversing the propagation direc-
tion. This is a remarkable effect of anisotropy, which was
verified experimentally for silicon.

The detailed behavior of the functionF in the nonlinear
terms of the evolution equation seems to have only a minor
influence on the solitary pulse shapes, especially for fused
quartz as substrate material, whereFsXd varies little withX
(by <20%). In the case of the Sis001d substrate with propa-
gation along thek100l direction, the functionFsXd does
show considerable variation, as its value atX=0 is only 10%
of Fs1/2d. But even here, the pulse profiles determined with
the full F and withFsXd replaced byFs1/2d differ very little
(Fig. 3). Therefore, we may expect that replacingFsXd in Eq.
(2.16) by the constantFs1/2d will yield a reasonable ap-
proximation for the pulse shapes as well as for the dynamics
in many propagation geometries. In the absence of disper-

sion, the evolution equation with this replacement is identical
to the approximate equation(16) with Eq. (15) [or Eq. (38)]
in Ref. [44]. Recently, this equation has also been found in
the context of magnetohydrodynamics[45], and it has been
derived for weakly guided nonlinear Scholte waves[46]. In
the context of SAWs, the approximationFsXd=const be-
comes exact in the special case of one-component surface
waves[47]. However, care has to be taken in the case of a
coated substrate, since a thin film may cause the one-
component surface wave to become leaky. We emphasize
that when transforming Eq.(2.16) into real space, its nonlin-
earity remains highly nonlocal even with this approximation.
This is due to the factorq/k in the second nonlinear term.

For the special situation of a dispersion term of the form
m̄1q

3 discussed in the previous section(a KdV-type disper-
sion), closed-form expressions are known for a two-
parameter family of solitary wave solutions(parametersk
and j0) and a three-parameter family of stationary periodic
solutions(parametersk, j0, and the periodicityL=2p /q0) of
the evolution equation(2.16) with constantFsXd=F0. In the
following, we assume this constant to be real without loss of
generality.[If Fs1/2d is complex, it can be made real by a
simple transformation of the phases of the complex ampli-
tudesBsqd.] The resulting analytic solution is found with the
simple ansatz Qsqd=gq exps−qbd. A simplification is
achieved by a transition from strain amplitudesBsqd to the
displacement amplitudesAsqd with Bsqd= uquAsqd. The evo-
lution equation then takes the form

i
]

] t
Asqd = m̄1q

3Asqd + vRF0HE
0

q

ksq − kdAskdAsq − kd
dk

2p

+ 2E
q

`

qsk − qdAskdA*sk − qd
dk

2pJ . s3.11d

If Bsqd is the Fourier transform ofu1,1
s1dsx,0 ,td in the case of

an isotropic substrate,Asqd is proportional to the Fourier
transform of the surface elevation profileUsj ,td
=u3

s1dsx,0 ,td. The ansatz Asq,td=g exps−qfb+ ikvRtgd
solves Eq.(3.11), if

g = 12pZ3/F0 s3.12d

and

b2 = 3Z3/k. s3.13d

The corresponding surface elevation profile has Lorentzian
form

Usj,td =
bg/p

sj − kvRtd2 + b2 . s3.14d

The in-plane component of the particle velocity at the sur-
face,u̇1

s1dsx,0 ,td, has the characteristic “Mexican hat” shape.
Stationary periodic solutions are found viaAsq,td=2pdsq
−nq0dḡ exps−nfb̄+ iq0kvRtgd, where ḡ=6Z3q0/F0 and

3sinh−2b̄=1+k / sZ3q0
2d. The real-space version of this solu-

tion is

FIG. 3. Solitary pulse shape for Sis001dk001l determined with
the complete functionF (solid line) and withFsXd approximated by
Fs1/2d (dashed line).
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Usj,td = ḡF Î1 − b2

1 − b cosfq0sj − kvRtdg
− 1G , s3.15d

whereb=sechb̄. Equations(3.14) and(3.15) are almost iden-
tical to the corresponding solutions of the Benjamin-Ono
equation[48]. However, the relation between width, height,
and velocity differs. Nevertheless, Eq.(3.11) shares with the
Benjamin-Ono, KdV, and other evolution equations the prop-
erty that its stationary periodic solution may be expressed as
a linear superposition of localized pulses having the same
shape and the same relation between height and width as the
one-solitary-wave solution. This follows from the fact that

Î1 − b2

1 − b cossq0jd
= 2uypu o

n=−`

`
1

sq0j − 2npd2 + yp
2 + const,

s3.16d

where coshsypd=1/b.
Remarkably, the solitary wave solution(3.14) exhibits al-

gebraic decay while the linear limit of the evolution equation
(3.11), having KdV-type dispersion, suggests exponential de-
cay. However, because of the nonlocality of the nonlinearity
in real space, the linear limit is not relevant for the tails of
the solitary pulse.

So far, we have not been able to find closed-form expres-
sions for the solitary pulses in the experimentally most rel-
evant case of a dispersion termm̄0q

2Asqd, and it does not
seem to be straightforward to generalize the above ansatz to
construct analogous analytic solutions for other special dis-
persion laws of polynomial form.

IV. EXCITATION AND OBSERVATION OF SOLITARY
PULSES

The excitation and detection of the solitary SAW pulses
was performed with a contact-free all-optical technique. De-
tails concerning the physical background of this experimen-
tal method can be found in Ref.[27]. The technique has also
been used efficiently in other contexts of acoustic waves in
solids. A very recent example is an investigation of ultra-
sonic wave propagation in heterogeneous rock samples[49].

The straight-crested surface pulses were excited with a
Q-switched Nd:YAG laser, operated at 1.064mm, by focus-
ing the 8-ns-long laser pulses, with 30–60 mJ pulse energy,
to a line of 7 mm length and about 30mm width with a
cylindrical lens. To excite sufficiently nonlinear SAW pulses
a highly absorbing thin layer of a carbon suspension was
deposited in the source region, which completely absorbed
the laser radiation. The explosive evaporation of this layer
and the resulting recoil momentum exert a high pressure nor-
mal to the surface and launch a strongly nonlinear surface
pulse[5,6]. With this technique Mach numbers in the range
of about 0.01 have been achieved, limited by the fracture
strength of the material[50]. The excitation-detection setup
had a bandwidth of about 500 MHz.

The evolution of the propagating SAW pulse profile was
registered at two locations, separated by a few millimeters to
centimeters from the line source, using a probe-beam-

deflection setup. As probe laser a frequency-doubled diode-
pumped cw Nd:YAG laser with 100 mW power at 532 nm
was employed. The output signal of the position-sensitive
detector is proportional to the slopeu3,1=]u3/]x at the free
surface. As in the previous sections,u3 is the normal surface
displacement and the wave propagates along thex axis. The
surface slope is related to the normal component of the par-
ticle velocity at the surface,u3,1=−u̇3/vR+Ose2d. Note that
the longitudinal or in-plane componentu1,1 of the SAW pulse
could not be measured.

For a comparison between experiment and theory the two-
point-probe detection is crucial. This comparison is per-
formed with the help of numerical simulations on the basis
of the evolution equation(2.16). In our numerical scheme,
the Fourier transform of the surface slope is discretized,
Bsq,td=2pdsq−nq0dBnstd; i.e., the Fourier integral(2.26) is
replaced by a Fourier series with an assumed periodicityT
=2p / sq0vRd. Its value is chosen sufficiently large such that it
does not influence the results. The Fourier series is truncated
at n=N with N chosen sufficiently large to properly resolve
the pulse shape at the first observation point and features
emerging in the course of the pulse evolution. In this way,
evolution equation(2.16) is then reduced to a set ofN
coupled complex nonlinear ordinary differential equations:

i
]

] t
Bn = n2q0

2Dsnq0dBn + vRnq0Ho
m=1

n−1

Fsm/ndBmBn−m

+ 2 o
m=n+1

N

sn/mdF*sn/mdBmBm−n
* J , s4.1d

which have been integrated numerically.
The wave form detected at the first probe locationsx=0d

is multiplied by a calibration factor and expanded into a
Fourier series

u3,1s0,0,td = o
n=1

N

eBns0de−inq0vRt + c.c. s4.2d

The evolution of the Fourier amplitudesBnstd from the first
to the second probe locationsx=x2d is determined by inte-
grating Eq. (4.1) from t=0 to t=ex2, using a predictor-
corrector method with variable step size. Summing up the
Fourier series with the amplitudesBnsex2d, the simulated sur-
face slopeu3,1sx2,0 ,td at the second probe location is ob-
tained and compared with the experimental pulse shape. Ex-
perimental and simulation results are shown in Fig. 4 for a
strain pulse propagating on a silicon substrate[(111) surface]
in the f1̄1̄2g direction. The substrate was covered with a sili-
con oxide film. The second probe location had a distance of
15.5 mm from the first one. The pulse shapes at the first and
second probe locations may be compared with the stationary
solitary wave solution shown in Fig. 2(b). The lower inset of
Fig. 4 shows that the solitary pulse has already largely
formed at the first probe location. The asymmetry of the
solitary pulse with the maximum on the left is consistently
found in the experiment, in the simulation and in the station-
ary solution of the evolution equation[Fig. 2(b)]. The simu-
lation extends to distances far beyond the second probe lo-

ECKL et al. PHYSICAL REVIEW E 70, 046604(2004)

046604-10



cation and reveals a stable propagation of the solitary pulse
without a visible change of its shape. In addition, radiation is
found that is generated in the course of the formation of the
solitary pulse and that propagates at a velocity smaller than
the solitary pulse. Due to normal linear dispersion, the radia-
tion is slower thanvR while the solitary pulse propagates at a
velocity larger thanvR and consequently arrives at the sec-
ond probe earlier than the radiation.

To realize normal dispersion a film is needed which loads
the substrate. For example, a NiCr(80% Ni, 20% Cr) film of
300 nm thickness on fused silica or a 110-nm-thick silicon
oxide film on crystalline silicon generated a single solitary
pulse at the remote probe location. On the other hand, a
stiffening film is needed to obtain an anomalous dispersion
effect. This case was realized by deposition of a 50-nm-thick
titanium-nitride film on fused silica. The normal and anoma-
lous dispersion was matched with the nonlinearity to gener-
ate solitary surface elastic pulses[6].

V. PULSE COLLISIONS

The pulse dynamics has been investigated numerically in
the way described in the previous section imposing periodic
boundary conditions in thej domain. The system ofN
coupled nonlinear ordinary differential equations corre-
sponding to Eq.(4.1) was integrated using a variable-step-
size Adams method(see, for example, Ref.[51]). In our nu-

merical studies of pulse collisions, the following initial
conditions were chosen:

Bns0d = kIQn
sId + expsinfdkIIQn

sII d. s5.1d

Here, Qn
sId and Qn

sII d are solutions of Eq.(3.5), with z,=
−m̄,−2q0

,−1/ skIvRd and z,=−m̄,−2q0
,−1/ skIIvRd, respectively.

They correspond to pulse trains with well-separated highly
localized pulses. The phase anglef is chosen such that the
two pulse trains do not overlap.

Two types of linear dispersion laws were considered in
the numerical pulse collision simulations:(i) q2Dsqd~q2,
which is the usual situation for a thin film on a homogeneous
substrate. The linear dispersion term in the evolution equa-
tion is then the same as the one in the BO equation.(ii )
q2Dsqd~q3, which corresponds to a special choice of the
acoustic mismatch between film and substrate, as pointed out
in Sec. II A. In this case, the linear dispersion term is iden-
tical to that in the KdV equation.

A typical scenario for pulse collisions in the case of
BO-type dispersion is shown in Fig. 5. In this simulation, the
function F was approximated by a constant. When the two
pulses approach each other, the faster of the two is acceler-
ated and thereby further compressed. The collision is
strongly inelastic. A similar behavior was found for the func-
tion F corresponding to Sis001dk100l [52]. In another ex-
ample pertaining to an isotropic substrate[53], the accelera-
tion of the faster pulse was not very pronounced. In all three
cases, the following features were observed: The two pulses
do not really pass through each other. The compression of

FIG. 4. Evolution of a strain pulse, generated by laser excitation
on a Sis111d surface coated with a silicon oxide film. Propagation

direction: f1̄1̄2g The local surface slopeu3,1 is shown. Gray scale:
result of numerical simulation with experimental pulse at the first
probe location as initial condition.(Dark: negative. Bright: positive
values ofu3,1.) Lower inset: experimental pulse shape at the first
probe location. Upper inset: experimental(solid line) and simulated
(dashed line) pulse shape at the second probe location. Position of
the second probe indicated by a horizontal dashed line.

FIG. 5. Collision of solitary pulses: BO-type linear dispersion,F
approximated by a constant.(In this and the following figures, the
units at the axes are arbitrary.)

FIG. 6. Collision of solitary pulses: KdV-type linear dispersion,
F approximated by a constant.
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the faster pulse continues after the collision, and the slower
pulse seems to be converted into radiation—i.e., into quasi-
linear waves.

The situation is completely different in the case of KdV-
type linear dispersion as demonstrated in Fig. 6. Here, the
pulse collision is nearly elastic with only a small amount of
radiation being generated. An almost elastic collision was
also observed in a simulation carried out with the functionF
corresponding to isotropic silica as substrate material(Fig.
7). With the comparatively large pulse widths chosen as ini-
tial conditions, radiation is no longer visible. From this find-
ing one may conclude that the approximation of a constant
function F is not essential for having almost elastic colli-
sions. Radiation can be enhanced by choosing narrow pulses
having initial velocities close to each other.

The results of these numerical simulations suggest that the
evolution equation(2.16) with KdV-type dispersion is, in
some sense, close to an integrable system. We now demon-
strate that this is indeed the case. With the approximation
F=const and withDsqd=m̄1q, Eq. (2.16) is readily converted
into Eq.(3.11) for the Fourier transform of the surface eleva-
tion profile. With

Usj,td =E
0

`

Asq,tdeiqj dq

2p
, s5.2d

Eq. (3.11) is transformed into real space. It may be regarded
as a special case of a one-parameter family of evolution
equations,

]

] t
U =

1

4
s5l − 1d

]3

] j3U + sl − 1dĤF ]

] j
UG ]

] j
U

+
]

] j
HĤFU

]

] j
UG + s2l − 1dUĤF ]

] j
UG −

4

9
lU3J ,

s5.3d

with the parameterl ranging from 0 to 1.(Ĥ denotes again
the Hilbert transform.) In the limiting casel=0, Eq.(5.3) is
the real-space version of Eq.(3.11) (after rescaling)—i.e., the
evolution equation for the surface elevation profile associ-
ated with nonlinear Rayleigh waves for a special choice of
the acoustic mismatch between substrate and film and for an
approximation of the nonlinearity that is well justified for
fused quartz as substrate material. In the limitl=1, Eq.(5.3)
is the BO3 equation—i.e., the third member of the Benjamin-
Ono hierarchy analyzed by Case[54]. It has multisoliton
solutions and hence elastic pulse collisions.

It is easily shown that Eq.(5.3) has the solitary wave
solution

Usj,td =
− 3Î12k̄

4k̄sj − k̄t + j0d2 + 3
, s5.4d

with parametersk̄.0 andj0, independent of the parameter
l. This is most conveniently done with the Fourier-space
version of Eq.(5.3). Therefore, the(approximate) evolution
equation(3.11) for nonlinear SAWs in a coated substrate
with special acoustic mismatch between film and substrate
may be continuously transformed into an equation that has

FIG. 7. Collision of solitary pulses: KdV-type linear dispersion,
F corresponding to fused silica as substrate material.

FIG. 8. Pulse evolution: BO-type linear dispersion,F=const.
For the initial conditions see text.

FIG. 9. Pulse evolution: KdV-type linear dispersion,F=const.
For the initial conditions see text.

FIG. 10. Pulse evolution: KdV-type linear dispersion,F=const.
For the initial conditions see text.
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multisoliton solutions—namely, the BO3 equation. This con-
tinuous transformation preserves the solitary wave solution.
In this sense, Eq.(3.11) is “in the neighborhood of an inte-
grable system,” which may explain the numerical findings.
However, we have to note that Eq.(5.3) contains an addi-
tional third-order nonlinearity forlÞ0. On the way from
l=0 tol=1, the sign of the linear dispersion term changes at
l=1/5. Forthis value ofl, one encounters the situation of a
solitary wave existing even in the absence of linear disper-
sion. But this is not unusual as the combination of second-
order and third-order nonlinearities in Eq.(5.3) is not scale
invariant [55].

VI. DYNAMICS WITH INITIAL CONDITIONS CLOSE
TO A SOLITARY PULSE

The strong difference in the dynamical behavior described
by Eq. (2.16) with BO-type dispersion on the one hand and
KdV-type dispersion on the other is also reflected in the evo-
lution of pulses that are initially close to a solitary solution.
Figures 8–10 present the time evolution of pulses that corre-
spond to solitary wave solutions enlarged by a factorM at
t=0: ua,1

s1d sx,0 ,0d=MkSask1/s,−1dxd. Figure 8 refers to
BO-type dispersion, and the magnification factor has been
chosen close to 1sM =1.05d. Nevertheless, the deviation of
the initial condition from that of a solitary pulse has a strong
effect on the dynamics. The pulse is repeatedly accelerated
and decelerated and, respectively, compressed and decom-
pressed. This behavior is accompanied by the generation of
radiation. Such a rolling picture in thej−t plane is certainly
not expected in integrable systems, where an infinite number
of conservation laws strongly restricts the dynamics. The
situation in Fig. 9, referring to KdV-type dispersion, is much
more reminiscent of an integrable system. Here, the magni-
fication factorM has been chosen to be 2. From the initial
condition, one large pulse and possibly several smaller
pulses emerge and propagate with more or less constant
speed. In addition, radiation is produced. However, when
increasing the magnification factor to larger values(M =5 in
Fig. 10), a behavior is observed, even in the case of KdV-
type dispersion, that is not expected to occur in integrable
systems. From the initial conditions, two large solitary pulses
emerge that initially propagate with different speed, then at-
tract each other and perform a collision(i.e., overtake each
other) with little radiation shed(Fig. 10). When following
the two pulses further in time, one finds that the amount of
radiation in the system increases and the two pulses do not
seem to collide again.

In the simulations leading to the results exhibited in Figs.
8–10, the functionF in the evolution equation(2.16) was
approximated by a constant. A systematic investigation of the
pulse dynamics in this system with BO-type and KdV-type
dispersions remains yet to be done. Such an investigation
would have to examine in detail the influence of the finite
spatial domain and periodic boundary conditions as they may
especially affect the velocities of the pulses.

VII. DEPTH PROFILE OF SOLITARY SOLUTIONS

The complicated depth structure of linear straight-crested
SAWs, consisting of up to three partial waves, leads to non-

trivial depth profiles of solitary pulses and stationary peri-
odic waves. With the traveling wave ansatz

us jdsx,z,td = ûs jd
„x − vRs1 + ekdt,z… s7.1d

at each orderj in the asymptotic expansion(2.7), the depth
profiles of solitary and periodic SAWs may be determined as
expansions in powers of the parametere—i.e., the typical
strain. This has been discussed in some detail for the simpler
system of nonlinear waves guided at the interface between a
highly compressible fluid and a weakly compressible inho-
mogeneous solid, where the second-order contribution to the
depth profile of a solitary pulse has been determined numeri-
cally [46]. From Eqs. (2.8), (2.9), and (3.1) and Bsqd
= iqAsqd, we obtain the leading-order term as

ub,1
s1d sx,z,td = kŜbsk1/s,−1dfx − vRs1 + ekdt − x0g,k1/s,−1dzd

s7.2d

and

Ŝbsx,zd =E
0

` dq

2p
o
r=1

3

bbsrdeqfix+asrdzgQsqd + c.c., s7.3d

whereQsqd is a solution of the nonlinear homogeneous inte-
gral equation(3.2). Figures 11 and 12 show examples of

depth profilesŜ1 for fused silica as substrate and Sis111d
k112l. In both cases, BO-type dispersion was assumed. If we
approximate the functionF for the silica substrate by a con-
stant and assume KdV-type dispersion, we obtain the follow-

ing closed-form expression forŜ1:

FIG. 11. Depth profile of solitary pulses. Substrate: fused silica,
BO-type linear dispersion.

FIG. 12. Depth profile of solitary pulses. Propagation geometry:

Sis111dk112̄l, BO-type linear dispersion.
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Ŝ1sj,zd =
g

pf1 −ÎasLdasTdg
H fasLdz− bg2 − x2

hx2 + fasLdz− bg2j2

− ÎasLdasTd
fasTdz− bg2 − x2

hx2 + fasTdz− bg2j2J . s7.4d

Here, asLd=Î1−svR/vLd2, asTd=Î1−svR/vTd2 and vL svTd
are the velocities of longitudinal(transverse) bulk waves in
the silica substrate.b and g have been specified in Eqs.
(3.12) and (3.13). The approximate analytic solution(7.4)
gives an algebraic decay in the direction along the surface as
well as in the direction normal to it. A plot of Eq.(7.4) looks
very similar to Fig. 11.

Higher-order terms of the displacement gradients are de-
termined by solving successively inhomogeneous linear
boundary value problems. At each order, a compatibility con-
dition has to be satisfied. The higher-order corrections deter-
mined in this way contain secular terms in the depth coordi-
natez. As mentioned already in Sec. II B, these terms have
been criticized by Lardner[12] since they cause the solutions
to be nonuniform. Lardner also pointed out that solutions
uniformly valid up to depths of the order of 1/seq̄d, whereq̄
is a typical wave number, can be constructed by introducing
a stretched depth coordinate and integrating the constraints
(2.28). We show here how this construction works for sta-
tionary periodic solutions. In this case,

crsq,h,td = 2pkdsq − nq0dCn
srdskq0hde−inq0kt/sinq0d.

s7.5d

In terms of the new amplitudesCn
srd the constraint(2.28)

takes the form

]

] h
Cn

srdshd = − 2ngsrdCn
srdshd + nGsrdo

m=1

n−1

Cm
srdshdCn−m

srd shd.

s7.6d

This has to be integrated with the initial conditionsCn
srds0d

=Qn andQn determined from Eq.(3.5). The result is

Cnshd = exps− 2nghdo
j=0

n−1

pj
sndh j . s7.7d

For the coefficientspj
snd, the following recursion relation is

readily found:

pj
snd =

n

j
Go

m=1

n−1

o
,=1

m−1

p,
smdpj−,−1

sn−mdss j − , − 1un − m− 1d s7.8d

for j .0 andp0
snd=Qn. Heressi ukd=1 for 0ø i øk and zero

otherwise. This recursion relation can easily be implemented
in numerical calculations. For simplicity, we have not explic-
itly indicated the dependence onr in Eqs.(7.7) and (7.8).

VIII. CONCLUSIONS

In the sections above, we have aimed at giving a compre-
hensive presentation of the theory of surface acoustic solitary
waves and highlighting the agreement between calculations
based on nonlinear elasticity theory and experimental results
on solitary pulse shapes. The measurements were performed
by pulsed laser excitation of high-intensity acoustic pulses in
layered systems. As a main result, the anisotropy of the sub-
strate was found to have a strong influence on the pulse
shapes. It has been shown in numerical simulations that these
solitary pulses normally perform highly inelastic collisions
between each other. Only for a KdV-type linear dispersion
law, which is realized by a special choice of linear acoustic
mismatch between the substrate and a coating film, are SAW
pulse collisions nearly elastic. An explanation for this finding
is suggested which is based on the fact that in this special
case, the evolution equation for nonlinear SAWs can be re-
lated to an equation of the Benjamin-Ono hierarchy.

An important feature of surface acoustic solitary waves is
their two-dimensional character. They have a nontrivial
depth profile which may be constructed from their associated
strain distribution at the surface. The latter can be determined
from a one-dimensional evolution equation with a strongly
nonlocal second-order nonlinearity. The derivation of the
evolution equation, as well as the reconstruction of the depth
profile, was done with the help of asymptotic methods that
have an approximate character and are valid for weak non-
linearity and weak dispersion. Different variants of the
theory provided in the literature were compared, and it has
been shown explicitly that three of them lead to the same
evolution equation. With these asymptotic methods station-
ary periodic solutions of the equations of nonlinear elasticity
were constructed that are uniformly valid up to depths of the
order of a typical wavelength divided by a typical strain.

Due to the absence of material dispersion in the acoustics
of solids, there are several physical systems where acoustic
waves are nondispersive. By modification of the propagation
geometry, dispersion can be introduced and tailored in a con-
trolled way. One example is the system investigated here—
namely(generalized), Rayleigh waves propagating along the
planar surface of a homogeneous elastic half-space. Normal
and anomalous dispersion of the SAWs was realized by de-
positing a thin isotropic film onto the substrate. Other types
of guided acoustic waves that are ideally nondispersive in-
clude Bleustein-Gulyaev waves, wedge acoustic waves,
Stonely waves, etc. Nonlinear effects in these nondispersive
systems have partly been studied already, and evolution
equations with nonlocal nonlinearity have been derived
[56–58,33]. When dispersion is introduced into these sys-
tems, solitary waves are expected to exist. The nonlinearity
in the corresponding evolution equations is partly of third
order. Effective evolution equations with nonlocal nonlinear-
ity of third order have also been derived in the field of non-
linear optics for pulse propagation in dispersion-managed fi-
bers[59,60], and solitary solutions for such equations have
been determined numerically[61]. An important difference is
the scale invariance of the nonlinearity of homogeneous elas-
tic media in the acoustics context, which poses a challenge
for future investigations.
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